Copied to
clipboard

G = C24.64D10order 320 = 26·5

4th non-split extension by C24 of D10 acting via D10/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.64D10, C23.27D20, C23.16Dic10, (C23×C4).8D5, (C22×C20)⋊25C4, (C2×C20).475D4, C42(C23.D5), (C22×C4)⋊8Dic5, C2010(C22⋊C4), C2.4(C207D4), (C23×C20).11C2, C222(C4⋊Dic5), C22.60(C2×D20), (C22×C10).26Q8, C10.79(C4⋊D4), C55(C23.7Q8), (C22×C4).433D10, (C22×C10).143D4, C10.68(C22⋊Q8), C23.31(C2×Dic5), C2.5(C20.48D4), C22.63(C4○D20), (C23×C10).99C22, C22.32(C2×Dic10), C23.303(C22×D5), C10.10C4224C2, C10.68(C42⋊C2), (C22×C20).484C22, (C22×C10).363C23, C22.50(C22×Dic5), (C22×Dic5).66C22, C2.12(C23.21D10), C10.79(C2×C4⋊C4), (C2×C10)⋊10(C4⋊C4), (C2×C4⋊Dic5)⋊16C2, C2.16(C2×C4⋊Dic5), (C2×C10).44(C2×Q8), (C2×C20).455(C2×C4), C2.6(C2×C23.D5), (C2×C10).549(C2×D4), (C2×C4).85(C2×Dic5), C22.87(C2×C5⋊D4), (C2×C10).91(C4○D4), (C2×C4).260(C5⋊D4), C10.111(C2×C22⋊C4), (C2×C23.D5).18C2, (C22×C10).204(C2×C4), (C2×C10).294(C22×C4), SmallGroup(320,839)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.64D10
C1C5C10C2×C10C22×C10C22×Dic5C2×C4⋊Dic5 — C24.64D10
C5C2×C10 — C24.64D10
C1C23C23×C4

Generators and relations for C24.64D10
 G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 638 in 234 conjugacy classes, 103 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C23.7Q8, C4⋊Dic5, C23.D5, C22×Dic5, C22×C20, C22×C20, C22×C20, C23×C10, C10.10C42, C2×C4⋊Dic5, C2×C23.D5, C23×C20, C24.64D10
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, D10, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4⋊D4, C22⋊Q8, Dic10, D20, C2×Dic5, C5⋊D4, C22×D5, C23.7Q8, C4⋊Dic5, C23.D5, C2×Dic10, C2×D20, C4○D20, C22×Dic5, C2×C5⋊D4, C20.48D4, C2×C4⋊Dic5, C23.21D10, C207D4, C2×C23.D5, C24.64D10

Smallest permutation representation of C24.64D10
On 160 points
Generators in S160
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 21)(19 22)(20 23)(41 116)(42 117)(43 118)(44 119)(45 120)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(71 91)(72 92)(73 93)(74 94)(75 95)(76 96)(77 97)(78 98)(79 99)(80 100)(121 150)(122 151)(123 152)(124 153)(125 154)(126 155)(127 156)(128 157)(129 158)(130 159)(131 160)(132 141)(133 142)(134 143)(135 144)(136 145)(137 146)(138 147)(139 148)(140 149)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 21)(19 22)(20 23)(41 141)(42 142)(43 143)(44 144)(45 145)(46 146)(47 147)(48 148)(49 149)(50 150)(51 151)(52 152)(53 153)(54 154)(55 155)(56 156)(57 157)(58 158)(59 159)(60 160)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(71 91)(72 92)(73 93)(74 94)(75 95)(76 96)(77 97)(78 98)(79 99)(80 100)(101 137)(102 138)(103 139)(104 140)(105 121)(106 122)(107 123)(108 124)(109 125)(110 126)(111 127)(112 128)(113 129)(114 130)(115 131)(116 132)(117 133)(118 134)(119 135)(120 136)
(1 85)(2 86)(3 87)(4 88)(5 89)(6 90)(7 91)(8 92)(9 93)(10 94)(11 95)(12 96)(13 97)(14 98)(15 99)(16 100)(17 81)(18 82)(19 83)(20 84)(21 62)(22 63)(23 64)(24 65)(25 66)(26 67)(27 68)(28 69)(29 70)(30 71)(31 72)(32 73)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 61)(41 132)(42 133)(43 134)(44 135)(45 136)(46 137)(47 138)(48 139)(49 140)(50 121)(51 122)(52 123)(53 124)(54 125)(55 126)(56 127)(57 128)(58 129)(59 130)(60 131)(101 146)(102 147)(103 148)(104 149)(105 150)(106 151)(107 152)(108 153)(109 154)(110 155)(111 156)(112 157)(113 158)(114 159)(115 160)(116 141)(117 142)(118 143)(119 144)(120 145)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 105 24 121)(2 104 25 140)(3 103 26 139)(4 102 27 138)(5 101 28 137)(6 120 29 136)(7 119 30 135)(8 118 31 134)(9 117 32 133)(10 116 33 132)(11 115 34 131)(12 114 35 130)(13 113 36 129)(14 112 37 128)(15 111 38 127)(16 110 39 126)(17 109 40 125)(18 108 21 124)(19 107 22 123)(20 106 23 122)(41 94 141 74)(42 93 142 73)(43 92 143 72)(44 91 144 71)(45 90 145 70)(46 89 146 69)(47 88 147 68)(48 87 148 67)(49 86 149 66)(50 85 150 65)(51 84 151 64)(52 83 152 63)(53 82 153 62)(54 81 154 61)(55 100 155 80)(56 99 156 79)(57 98 157 78)(58 97 158 77)(59 96 159 76)(60 95 160 75)

G:=sub<Sym(160)| (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,21)(19,22)(20,23)(41,116)(42,117)(43,118)(44,119)(45,120)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(71,91)(72,92)(73,93)(74,94)(75,95)(76,96)(77,97)(78,98)(79,99)(80,100)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,141)(133,142)(134,143)(135,144)(136,145)(137,146)(138,147)(139,148)(140,149), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,21)(19,22)(20,23)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(71,91)(72,92)(73,93)(74,94)(75,95)(76,96)(77,97)(78,98)(79,99)(80,100)(101,137)(102,138)(103,139)(104,140)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,127)(112,128)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,81)(18,82)(19,83)(20,84)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,61)(41,132)(42,133)(43,134)(44,135)(45,136)(46,137)(47,138)(48,139)(49,140)(50,121)(51,122)(52,123)(53,124)(54,125)(55,126)(56,127)(57,128)(58,129)(59,130)(60,131)(101,146)(102,147)(103,148)(104,149)(105,150)(106,151)(107,152)(108,153)(109,154)(110,155)(111,156)(112,157)(113,158)(114,159)(115,160)(116,141)(117,142)(118,143)(119,144)(120,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,105,24,121)(2,104,25,140)(3,103,26,139)(4,102,27,138)(5,101,28,137)(6,120,29,136)(7,119,30,135)(8,118,31,134)(9,117,32,133)(10,116,33,132)(11,115,34,131)(12,114,35,130)(13,113,36,129)(14,112,37,128)(15,111,38,127)(16,110,39,126)(17,109,40,125)(18,108,21,124)(19,107,22,123)(20,106,23,122)(41,94,141,74)(42,93,142,73)(43,92,143,72)(44,91,144,71)(45,90,145,70)(46,89,146,69)(47,88,147,68)(48,87,148,67)(49,86,149,66)(50,85,150,65)(51,84,151,64)(52,83,152,63)(53,82,153,62)(54,81,154,61)(55,100,155,80)(56,99,156,79)(57,98,157,78)(58,97,158,77)(59,96,159,76)(60,95,160,75)>;

G:=Group( (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,21)(19,22)(20,23)(41,116)(42,117)(43,118)(44,119)(45,120)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(71,91)(72,92)(73,93)(74,94)(75,95)(76,96)(77,97)(78,98)(79,99)(80,100)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,141)(133,142)(134,143)(135,144)(136,145)(137,146)(138,147)(139,148)(140,149), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,21)(19,22)(20,23)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(71,91)(72,92)(73,93)(74,94)(75,95)(76,96)(77,97)(78,98)(79,99)(80,100)(101,137)(102,138)(103,139)(104,140)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,127)(112,128)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,81)(18,82)(19,83)(20,84)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,61)(41,132)(42,133)(43,134)(44,135)(45,136)(46,137)(47,138)(48,139)(49,140)(50,121)(51,122)(52,123)(53,124)(54,125)(55,126)(56,127)(57,128)(58,129)(59,130)(60,131)(101,146)(102,147)(103,148)(104,149)(105,150)(106,151)(107,152)(108,153)(109,154)(110,155)(111,156)(112,157)(113,158)(114,159)(115,160)(116,141)(117,142)(118,143)(119,144)(120,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,105,24,121)(2,104,25,140)(3,103,26,139)(4,102,27,138)(5,101,28,137)(6,120,29,136)(7,119,30,135)(8,118,31,134)(9,117,32,133)(10,116,33,132)(11,115,34,131)(12,114,35,130)(13,113,36,129)(14,112,37,128)(15,111,38,127)(16,110,39,126)(17,109,40,125)(18,108,21,124)(19,107,22,123)(20,106,23,122)(41,94,141,74)(42,93,142,73)(43,92,143,72)(44,91,144,71)(45,90,145,70)(46,89,146,69)(47,88,147,68)(48,87,148,67)(49,86,149,66)(50,85,150,65)(51,84,151,64)(52,83,152,63)(53,82,153,62)(54,81,154,61)(55,100,155,80)(56,99,156,79)(57,98,157,78)(58,97,158,77)(59,96,159,76)(60,95,160,75) );

G=PermutationGroup([[(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,21),(19,22),(20,23),(41,116),(42,117),(43,118),(44,119),(45,120),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(71,91),(72,92),(73,93),(74,94),(75,95),(76,96),(77,97),(78,98),(79,99),(80,100),(121,150),(122,151),(123,152),(124,153),(125,154),(126,155),(127,156),(128,157),(129,158),(130,159),(131,160),(132,141),(133,142),(134,143),(135,144),(136,145),(137,146),(138,147),(139,148),(140,149)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,21),(19,22),(20,23),(41,141),(42,142),(43,143),(44,144),(45,145),(46,146),(47,147),(48,148),(49,149),(50,150),(51,151),(52,152),(53,153),(54,154),(55,155),(56,156),(57,157),(58,158),(59,159),(60,160),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(71,91),(72,92),(73,93),(74,94),(75,95),(76,96),(77,97),(78,98),(79,99),(80,100),(101,137),(102,138),(103,139),(104,140),(105,121),(106,122),(107,123),(108,124),(109,125),(110,126),(111,127),(112,128),(113,129),(114,130),(115,131),(116,132),(117,133),(118,134),(119,135),(120,136)], [(1,85),(2,86),(3,87),(4,88),(5,89),(6,90),(7,91),(8,92),(9,93),(10,94),(11,95),(12,96),(13,97),(14,98),(15,99),(16,100),(17,81),(18,82),(19,83),(20,84),(21,62),(22,63),(23,64),(24,65),(25,66),(26,67),(27,68),(28,69),(29,70),(30,71),(31,72),(32,73),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,61),(41,132),(42,133),(43,134),(44,135),(45,136),(46,137),(47,138),(48,139),(49,140),(50,121),(51,122),(52,123),(53,124),(54,125),(55,126),(56,127),(57,128),(58,129),(59,130),(60,131),(101,146),(102,147),(103,148),(104,149),(105,150),(106,151),(107,152),(108,153),(109,154),(110,155),(111,156),(112,157),(113,158),(114,159),(115,160),(116,141),(117,142),(118,143),(119,144),(120,145)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,105,24,121),(2,104,25,140),(3,103,26,139),(4,102,27,138),(5,101,28,137),(6,120,29,136),(7,119,30,135),(8,118,31,134),(9,117,32,133),(10,116,33,132),(11,115,34,131),(12,114,35,130),(13,113,36,129),(14,112,37,128),(15,111,38,127),(16,110,39,126),(17,109,40,125),(18,108,21,124),(19,107,22,123),(20,106,23,122),(41,94,141,74),(42,93,142,73),(43,92,143,72),(44,91,144,71),(45,90,145,70),(46,89,146,69),(47,88,147,68),(48,87,148,67),(49,86,149,66),(50,85,150,65),(51,84,151,64),(52,83,152,63),(53,82,153,62),(54,81,154,61),(55,100,155,80),(56,99,156,79),(57,98,157,78),(58,97,158,77),(59,96,159,76),(60,95,160,75)]])

92 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P5A5B10A···10AD20A···20AF
order12···222224···44···45510···1020···20
size11···122222···220···20222···22···2

92 irreducible representations

dim111111222222222222
type+++++++-+-++-+
imageC1C2C2C2C2C4D4D4Q8D5C4○D4Dic5D10D10C5⋊D4Dic10D20C4○D20
kernelC24.64D10C10.10C42C2×C4⋊Dic5C2×C23.D5C23×C20C22×C20C2×C20C22×C10C22×C10C23×C4C2×C10C22×C4C22×C4C24C2×C4C23C23C22
# reps12221842224842168816

Matrix representation of C24.64D10 in GL5(𝔽41)

10000
01000
004000
00010
000040
,
400000
01000
00100
00010
00001
,
10000
040000
004000
000400
000040
,
10000
09000
003200
000180
000016
,
90000
003200
09000
000016
000180

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,9,0,0,0,0,0,32,0,0,0,0,0,18,0,0,0,0,0,16],[9,0,0,0,0,0,0,9,0,0,0,32,0,0,0,0,0,0,0,18,0,0,0,16,0] >;

C24.64D10 in GAP, Magma, Sage, TeX

C_2^4._{64}D_{10}
% in TeX

G:=Group("C2^4.64D10");
// GroupNames label

G:=SmallGroup(320,839);
// by ID

G=gap.SmallGroup(320,839);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,232,422,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽